52 research outputs found

    Comparison of nonhomogeneous regression models for probabilistic wind speed forecasting

    Full text link
    In weather forecasting, nonhomogeneous regression is used to statistically postprocess forecast ensembles in order to obtain calibrated predictive distributions. For wind speed forecasts, the regression model is given by a truncated normal distribution where location and spread are derived from the ensemble. This paper proposes two alternative approaches which utilize the generalized extreme value (GEV) distribution. A direct alternative to the truncated normal regression is to apply a predictive distribution from the GEV family, while a regime switching approach based on the median of the forecast ensemble incorporates both distributions. In a case study on daily maximum wind speed over Germany with the forecast ensemble from the European Centre for Medium-Range Weather Forecasts, all three approaches provide calibrated and sharp predictive distributions with the regime switching approach showing the highest skill in the upper tail

    Predicting Inflation: Professional Experts Versus No-Change Forecasts

    Full text link
    We compare forecasts of United States inflation from the Survey of Professional Forecasters (SPF) to predictions made by simple statistical techniques. In nowcasting, economic expertise is persuasive. When projecting beyond the current quarter, novel yet simplistic probabilistic no-change forecasts are equally competitive. We further interpret surveys as ensembles of forecasts, and show that they can be used similarly to the ways in which ensemble prediction systems have transformed weather forecasting. Then we borrow another idea from weather forecasting, in that we apply statistical techniques to postprocess the SPF forecast, based on experience from the recent past. The foregoing conclusions remain unchanged after survey postprocessing

    Using proper divergence functions to evaluate climate models

    Full text link
    It has been argued persuasively that, in order to evaluate climate models, the probability distributions of model output need to be compared to the corresponding empirical distributions of observed data. Distance measures between probability distributions, also called divergence functions, can be used for this purpose. We contend that divergence functions ought to be proper, in the sense that acting on modelers' true beliefs is an optimal strategy. Score divergences that derive from proper scoring rules are proper, with the integrated quadratic distance and the Kullback-Leibler divergence being particularly attractive choices. Other commonly used divergences fail to be proper. In an illustration, we evaluate and rank simulations from fifteen climate models for temperature extremes in a comparison to re-analysis data
    • …
    corecore